Someone posted a nonconvex nonlinear optimization model on OR Stack Exchange and asked for advice about possible reformulations, piecewise linear approximations, using global optimizers, and other things. The model is as follows:max All symbols other than q_1, q_2 and x are model parameters (or indexes). The author originally had x as binary variables, apparently believing that would facilitate linearization of products, but also expressed interest in the case where x is continuous. I'm going to propose a possible "low-tech" solution procedure for the continuous case. The binary case is probably a bit too tough for me. The author supplied sample data for all parameters except \beta, with dimensions n=3 and T=4 but expressed a desire to solve the model for n=10,000 and T=1,200 (gulp).
Note that the left-hand sides (LHSes) of the three constraints are identical. Let h() be the function on the right-hand side (RHS) of constraint (1), so that the RHS of (1) is h(q_1). h() is a monotonically decreasing function. The RHS of (3) is \beta h(q_1 + q_2). Since the left sides are equal, we have \beta h(q_1 + q_2) = h(q_1) \quad (4)which tells us several things. First, q_2 \ge 0 \implies h(q_1+q_2) \le h(q_1), so if \beta<1 it is impossible to satisfy (4). Second, if \beta =1, (4) implies that q_2 = 0, which simplifies the problem a bit. Lastly, let's assume \beta > 1. For fixed q_1 the LHS of (4) is monotonically decreasing in q_2, with the LHS greater than the RHS when q_2 = 0 and with \lim_{q_2\rightarrow \infty} \beta h(q_1+q_2) = \beta F_0. If \beta F_0 > h(q_1), there is no q_2 that can balance equation (4), and so the value of q_1 is infeasible in the model. If \beta F_0 < h(q_1), then there is exactly one value of q_2 for which (4) holds, and we can find it via line search.
Next, suppose that we have a candidate value for q_1 and have found the unique corresponding value of q_2 by solving (4). We just need to find a vector x\in [0,1]^n that satisfies (1) and (2). Equation (3) will automatically hold if (1) does, given (4). We can find x by solving a linear program that minimizes 0 subject to (1), (2) and the bounds for x.
Thus, we have basically turned the problem into a line search on q_1. Let's set an arbitrary upper limit of Q for q_1 and q_2, so that our initial "interval of uncertainty" for q_1 is [0, Q]. It's entirely possible that neither 0 nor Q is a feasible value for q_1, so our first task is to search upward from 0 until we find a feasible value (call it Q_\ell) for q_1, then downward from Q until we find a feasible value (call it Q_h) for q_1. After that, we cross our fingers and hope that all q_1 \in [Q_\ell,Q_h] are feasible. I think this is true, although I do not have a proof. (I'm much less confident that it is true if we require x to be binary.) Since q_2 is a function of q_1 and the objective function does not contain x, we can search [Q_\ell,Q_h] for a local optimum (for instance, by golden section search) and hope that the objective function is unimodal as a function of q_1, so that the local optimum is a global optimum. (Again, I do not have proof, although I would not be surprised if it were true.)
I put this to the test with an R script, using the author's example data. The linear programs were solved using CPLEX, with the model expressed via the OMPR package for R and using ROI as the intermediary between OMPR and CPLEX. I first concocted an arbitrary feasible solution and used it to compute \beta, so that I would be sure that the problem was feasible with my choice of \beta. Using \beta = 1.01866 and 100 (arbitrarily chosen) as the initial upper bounds for q_1 and q_2, my code produced an "optimal" solution of q_1= 5.450373, q_2 = 0.4664311, x = (1, 0.1334608, 0) with objective value 5.916804. There is a bit of rounding error involved: the common LHS of (1)-(3) evaluated to 126.6189, while the three RHSes were 126.6186, 126.6188, and 126.6186. (In my graduate student days, our characterization of this would be "good enough for government work".) Excluding loading libraries, the entire process took under three seconds on my desktop computer.
You can access my R code from my web site. It is in the form of an R notebook (with the code embedded), so even if you are not fluent in R, you can at least read the "prose" portions and see some of the nagging details involved.