A question on Mathematics Stack Exchange, "Placing number blocks so that the resulting matrix is symmetric", revolves around a square matrix whose entries are partitioned into blocks (submatrices). The submatrices need to be rearranged so that the resulting matrix is symmetric around its main diagonal. The author of the question asked if it were possible to do this using linear programming. I think the answer is no, but we can certainly do it with either an integer linear program or a constraint program. The author posts two examples ($4\times 4$ and $5\times 5$). I cobbled together Java code for a MIP model (using CPLEX) and a CP model (using CP Optimizer) and had no trouble solving both problems.
There are a couple of generalizations worth noting. First, while the example matrices contain integers, there is nothing preventing the two models from being used with other content types (real numbers, complex numbers, text). Some variable definitions would need modification, but conceptually both methods would work. Second, the author of the post used only one-dimensional blocks (row vectors or column vectors), but my code allows for arbitrary rectangular blocks. The code assumes that the "parent matrix" is square, but that would be easy enough to relax, so the same models (with minor adjustments) would work with arbitrary rectangular matrices.
I think that the puzzle makes a good vehicle for comparing MIP and CP applications to logic problems. In optimization problems, I suspect that MIP models often do a better job of computing objective bounds than do CP models. That is a non-issue here, since the problem is just to find a feasible solution. For logic problems and similar things (particularly scheduling), I think CP models tend to be more expressive, meaning certain types of constraints or relationships can be expressed more naturally with CP than with MIP (where the relationships turn into rather arcane and complicated adventures with binary variables). That applies here, where the CP model exploits the ability to use integer variables as subscripts of other variables.
As described in the PDF file, though, that subscripting ability has its limits. CP Optimizer will let you index a one-dimensional vector of variables using an integer variable, but not a two-dimensional array. In other words, x[y] is fine but x[y, z] is not (where x, y and z are all variables). The workaround I used is to flatten a 2-D matrix into a 1-D matrix. So if $N\times N$ matrix $x$ is flattened into $N^2\times 1$ vector $\hat{x},$ $x_{y,z}$ becomes $\hat{x}_{N(y - 1) + z}.$
The models are a bit too verbose to squeeze into a blog post, so I wrote them up in a separate PDF file. My Java code (which requires recent versions of CPLEX and CP Optimizer) can be had from my code repository under a Creative Commons license.